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Recently, we described a Bayesian inference approach to the MEG/

EEG inverse problem that used numerical techniques to estimate the

full posterior probability distributions of likely solutions upon which all

inferences were based [Schmidt, D.M., George, J.S., Wood, C.C., 1999.

Bayesian inference applied to the electromagnetic inverse problem.

Human Brain Mapping 7, 195; Schmidt, D.M., George, J.S., Ranken,

D.M., Wood, C.C., 2001. Spatial-temporal bayesian inference for

MEG/EEG. In: Nenonen, J., Ilmoniemi, R. J., Katila, T. (Eds.),

Biomag 2000: 12th International Conference on Biomagnetism. Espoo,

Norway, p. 671]. Schmidt et al. (1999) focused on the analysis of data at

a single point in time employing an extended region source model. They

subsequently extended their work to a spatiotemporal Bayesian

inference analysis of the full spatiotemporal MEG/EEG data set. Here,

we formulate spatiotemporal Bayesian inference analysis using a multi-

dipole model of neural activity. This approach is faster than the

extended region model, does not require use of the subject’s anatomical

information, does not require prior determination of the number of

dipoles, and yields quantitative probabilistic inferences. In addition, we

have incorporated the ability to handle much more complex and

realistic estimates of the background noise, whichmay be represented as

a sum of Kronecker products of temporal and spatial noise covariance

components. This reduces the effects of undermodeling noise. In order

to reduce the rigidity of the multi-dipole formulation which commonly

causes problems due to multiple local minima, we treat the given

covariance of the background as uncertain and marginalize over it in

the analysis. Markov Chain Monte Carlo (MCMC) was used to sample

the many possible likely solutions. The spatiotemporal Bayesian dipole

analysis is demonstrated using simulated and empirical whole-head

MEG data.
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Introduction

Magnetoencephalography (MEG) and electroencephalography

(EEG) are non-invasive techniques. These methods measure direct

physical consequences of neuronal currents and are capable of

resolving temporal patterns of neural activity in the millisecond

range. The MEG/EEG source localization problem, which identi-

fies active brain regions from measurements on or outside of the

human head, has been important in medical diagnosis of conditions

like epilepsy, in surgical planning, and in neuroscience research.

However, the MEG/EEG source localization inverse problem is

mathematically ill-posed, that is, it has no unique solution.

For several decades, researchers have worked to develop

MEG/EEG source localization methods to try to overcome the

inherent ill-posed nature of the inverse problem. A number of

localization methods which assume a dipolar source or an

extended source have been developed (see Hämäläinen et al.

(1993) for review). Most existing approaches fall into two broad

categories: (1) few-parameter models having Np << Ns and (2)

many-parameter models having Np >> Ns, where Np is the

number of parameters to be estimated in the model and Ns is

the number of measurements, typically the number of sensors in

MEG/EEG system. In general, few-parameter models are solved

by finding a best-fitting solution through various nonlinear

optimization techniques (Hämäläinen et al., 1993; Mosher et al.,

1992; Huang et al., 1998; Uutela et al., 1998a; Jun et al.,

2002). Many-parameter models are usually solved by the

minimum norm method, or variants of the same, that selects

the one solution minimizing a specified norm from the many

solutions that fit the data equally well (Hämäläinen and

Ilmoniemi, 1994; Gorodnitsky et al., 1995; Robinson and Vrba,

1999; Pascual-Marqui et al., 1994).

Recently, new probabilistic approaches to the MEG/EEG

source localization problem based on Bayesian inference using

Markov Chain Monte Carlo (MCMC) have been reported by

Schmidt et al. (1999), Bertrand et al. (2001a,b), and Kincses et al.

(2003). Unlike other probabilistic approaches (Baillet and

Garnero, 1997; Phillips et al., 1997), the Bayesian inference
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P(N, X, Q, J|B) ” P(B|N, X, Q, J) P(Q |X, N) P(J|N) P(X |N) P(N)

B T � L matrix representing observed

spatiotemporal data. L and T represent

the number of sensors and the number

of time samples in measurements, respectively.

N A priori unknown number of dipole sources.

X = (X1,X2, . . . ,

XN)

Vector of N dipole sources, with each

Xi = (xi, yi, zi) representing the location

of the i-th dipole.
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approach does not result in a single best solution to the problem

but produces a large number of likely solutions that fit both the

data and any prior information. From the many sampled likely

solutions, we can characterize some statistical information on any

feature of solutions. This provides an effective means for

quantifying uncertainty that is distinct from the other approaches

to quantify uncertainty in inverse algorithms (Medvick et al.,

1989; Singh and Harding, 2000; Darvas et al., 2005). Schmidt

and Bertrand focused on the analysis of data at a single point in

time and demonstrated the utility of Bayesian inference both for

including pertinent prior information (anatomical location and

orientation, sparseness of regions of activity, limitations on

current strength, and spatial correlation) and for yielding robust

results in spite of the under-determined inverse problem. Schmidt

et al. (1999) used an extended region model for neural activity

and Reversible Jump (RJ) MCMC method, while Bertrand et al.

(2001a,b) used a multi-dipole model and combined RJ-MCMC

and Parallel Tempering (PT) MCMC method. Schmidt et al.

(2001) extended their work to a Bayesian inference analysis of

the full spatiotemporal MEG/EEG data set, using their extended

region model for neural activity.

Here, we present a spatiotemporal Bayesian inference technique

for multi-dipole analysis. Compared to the full spatiotemporal

analysis for extended regions, it is faster and does not require the

use of the subject’s anatomical information. Furthermore, in

distinction to most other dipole analyses, it does not require the

prior determination of the number of dipoles.

We begin with an overview of the general techniques of

Bayesian inference. Then, we formulate the posterior probability

distribution by incorporating the relevant priors into the Bayesian

framework. To reduce computation costs and to improve MCMC

performance, the posterior probability distribution is simplified by

a marginalization technique over current time courses and a noise

covariance matrix. A speed-up strategy for computing the posterior

probability distribution is proposed, the MCMC sampling techni-

que is briefly introduced, and then noise covariance approximation

is discussed. Finally, results from experiments on simulated and

empirical data are presented.
J = ( J1, J2, . . . ,

JN)

Vector of N current time courses, with each

Ji = ( ji
1, ji

2, . . . , ji
T) representing signed

dipole moment magnitude over time of i-th dipole.

Negative sign means that dipole moment

orientation is reversed.

Q = (h1, h2,

. . . , hN)

Vector of N dipole moment orientations,

with each hi representing a unit tangential

direction of i-th dipole.
Formulation of Bayesian inference

Bayesian inference is a general procedure for constructing a

posterior probability distribution for quantities of interest from the

measurements and the given prior probability distributions for all

uncertain parameters. The method is conceptually simple and

relatively straightforward for even complicated problems.

The starting point for Bayesian inference is Bayes’ rule of

probability:

P h;Bð Þ ¼ P hjBð ÞP Bð Þ ¼ P Bjhð ÞP hð Þ;

If h represents parameters of interest and B represents data

depending on h, then the probability of h given B is

P hjBð Þ ¼ P h;Bð Þ
P Bð Þ ¼ P Bjhð ÞP hð Þ

P Bð Þ :

Here, P(h, B) is the joint probability distribution for h and B,

P(h|B) is the conditional probability distribution of h given B,

P(B) is the marginal probability distribution of B, and P(h) is the
prior probability distribution of h, which represents one’s

information of h before measurement. P(B|h) is the likelihood

function which modifies the prior P(h) to produce the posterior

probability distribution P(B|h). Since P(B) is independent of h, it
is constant and can be omitted from the posterior density:

P hjBð Þ”P Bjhð ÞP hð Þ:
Bayes’ rule of probability formulates how prior information and

measurements can be combined and encoded in the posterior

distribution. Commonly, the obtainable posterior distribution is

complex and in such cases is numerically sampled using MCMC

techniques (Chen et al., 2000; Gilks et al., 1995).

In this work, we propose a spatiotemporal MEG/EEG dipole

analysis based on Bayesian inference. This analysis is formulated in

the following way: assuming a localized effective dipole nature of

the neuromagnetic sources that can explain the spatiotemporal data,

we construct a current model that assumes a variable number of

current dipoles of brain activity that are composed of their locations

within a sphere of some radius R0, dipole orientations, and current

time courses representing dipole magnitudes over time. Further-

more, we assume a fixed dipole model, where dipole locations and

orientations are fixed over time, but dipole magnitudes vary over

time. There can be any number N of active current dipoles from

minimum Nmin up to some maximum Nmax. We used a spherical

head model and the Sarvas forward model (Sarvas, 1987), but our

analysis could employ other forward models as well.

Given the spatiotemporal measurement set, the Bayesian

formulation is as follows:
The prior distributions are constructed as follows:

& The dipole current time course prior distribution is chosen as a

Gaussian distribution:

P JjNð Þ ¼ 1

k
a ¼ 1

N

½ 2pr2
a

� �T=2jCcuj1=2�
e
�1

2
~N

a ¼ 1
1

r2a
JaVC

�1
cu Ja

: ð1Þ

Here, |I| denotes the determinant. Ccu is the temporal correlation

matrix of one time point with another, which allows us to include

the temporal correlation at nearby latencies. ra represents the prior

standard deviation of time varying current magnitudes of each

dipole. Both Ccu and ra are predetermined based on spatiotem-



Fig. 1. Two dipole sources problem.
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poral data to be analyzed and its expected active source properties.

In the examples described later, Ccu is parameterized as

Ccu i; jð Þ ¼ e�
1
2
i � jð Þ2=b2

; i; j ¼ 1; 2; :::; T : ð2Þ

b 	 0 is a parameter which controls correlation time scale. The

larger b yields the stronger correlation, while the smaller b
yields the weaker correlation. The prior standard deviation of

current magnitude ra can be predetermined depending on

signal strength of spatiotemporal data. For example, for the

very early response signal from a somatosensory median nerve

stimulus experiment, if it is expected that time varying current

magnitudes can be reached up to around 80 nAm at the peak,

ra can be set to some value between 0 and 80 nAm.

& The dipole location prior distribution is chosen to be uniform

over the region of the whole head model:

P X jNð Þ ¼
3

4pR3
0

� �N

XaaBall R0ð Þ 8a;

0 otherwise:

0
@

Ball(R0) is a spherical head model with a radius of R0. We

consider the spherical head model in this work. However, if

MRI data are available, it is also possible to confine the region

of our interest to brain cortex with a uniform distribution.

Another possible approach is to give a normal distribution

centered on brain cortex since most active dipole sources are on

or close to the cortex area.

& The dipole moment orientation prior distribution is chosen to be

uniform on [0, 2p]:

P QjX ;Nð Þ ¼ 1

2p

�� N

:

We take into account only the unit orientation vectors which

are orthogonal to radial vectors, i.e., dipole location vectors,

since radial directions of dipoles have no effect on MEG

signal in a spherical forward model. Orientation vector can be

parameterized with just one angular variable h. This restriction
would be relaxed if a non-spherical forward model were used.

& The prior distribution for the number of dipoles is chosen to be

uniform:

P Nð Þ ¼ 1

Nmax � Nmin þ 1:

Usually, Nmin = 0 in this work. Poisson distribution is also

usable.

& Assuming an LT-dimensional Gaussian noise model of mean

zero and noise covariance matrix C0, the likelihood P(B|N, X,

Q, J) of the observed measurements B for given parameters N,

J, X, and Q is described as:

P BjN ;X ;Q; Jð Þ ¼ 1

2pð ÞLT=2jC0j1=2
e�

1
2
vec B � Bcð ÞVC�1

0 vec B � Bcð Þ;

Bc¼ JA;
ð3Þ

where Bc is a calculated measurement through the forward

model. A is an N � L matrix representing lead field and

depends on dipole location X and dipole orientation Q. vec(E)

denotes a vector stacked in all the columns of E. The symbol V
denotes transposition and �1 inversion.
Finally, we obtain the Bayesian formulation of spatiotem-

poral MEG localization problem through Bayes’ rule:

P N ;X ;Q; JjBð Þ” 1

k
a ¼ 1

N

2pr2
a

� �T=2jCcuj1=2
h i e�1

2
BnVC

�1
0 Bn þ~N

a¼ 1
1

r2a
jaVC

�1
cu ja

	 

:

ð4Þ

Here, Bn = vec(B � JA). For simplicity, the constant was

dropped in Eq. (4).
Sampling issues

Having first formulated a complete probabilistic description

of the problem and then constructed the posterior, the next step

in Bayesian inference is to extract a representative sample of

likely solutions from the posterior distribution using an MCMC

sampling technique. Our MEG source localization problem can

be categorized into a very high dimensional problem. For

example, if N = 3 dipoles, L = 121 sensors, and T = 70 time

samples, then the dimension of this problem (i.e., number of

total unknown parameters we should sample) amounts to 223

for Eq. (4). In our experience, a straightforward implementation

of MCMC technique for problem Eq. (4) was likely to fail to

extract well-distributed samples. This was determined by

generating multiple MCMC runs with different starting points

and random seeds. A good test of whether an MCMC sampling

has converged and is well sampled is if the results from such

multiple chains are consistent. We discovered that this posterior

distribution (4) has numerous valleys and peaks over the

parameter region of interest, and this formulation of the

posterior had the following problems for sampling:

& High complexity: MCMC has more chance to be trapped in a

local maximum. This is analogous to the local minima problem

encountered with other spatiotemporal multi-dipole analyses

(Huang et al., 1998).



Fig. 2. Two dipole sources problem. Left: simulated spatiotemporal data. Right: reduced Chi-square time course (RCTC) for simulated data.

Table 1

Distribution Number of MCMC

runs stuck in a

local maximum

Average localization

error (per dipole)
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& Slow convergence: MCMC requires tremendous time to explore

the whole complex range.

These observations indicated that we had formulated the

problem in a way that was too rigid. In order to overcome

high complexity and slow convergence, smoothing of this high

dimensional posterior distribution function as well as reduction

of dimension of unknown parameters can be attempted in a

way which critical information of distribution function will not

be lost. We know that the inverse problem has a number of

uncertainties, and we can include those to help smooth out the

posterior. In reality, noise covariance is complex and is only

approximated and thus has inherent uncertainty. Incorporation

of noise covariance C as an uncertain parameter into the

Bayesian inference frame yields:

P N ;X ;Q; J;CjBð Þ”P BjN ;X ;Q; J;Cð ÞP QjX ;Nð ÞP JjNð ÞP X jNð Þ
P Cð ÞP Nð Þ:

The prior distribution of the noise covariance matrix is chosen

as the k-th inverse Wishart distribution1 (Triantafyllopoulos, 2002):

P Cð Þ ¼ 1

Z kð Þ jr0C0j k � r0 � 1ð Þ=2jCj�k=2
e�

1
2
Tr r0C0C

�1ð Þ;

Z kð Þ ¼ 2 k � r0 � 1ð Þr0=2pr0 r0 � 1ð Þ=4 k
r0

j ¼ 1

G
k � r0 � j

2

��
;

r0 ¼ LT : ð5Þ

Here, k is a degree of freedom which should be greater than 2r0,

i.e., twice the dimension of C. C0 is an estimation of a noise

covariance matrix, which can be given an identity matrix or any

rough estimation of a noise covariance matrix. G(I) is a gamma

function, and Tr(A) denotes a trace of a matrix A. It is known that

expectation E[C] with respect to the above distribution is C0

(Triantafyllopoulos, 2002).
1 If Xi for i = 1,. . ., m has a multivariate normal distribution with mean

vector 0 and covariance matrix �, and X denotes the m � p matrix

composed of the row vectors X i, then the p � p matrix XVX has a Wishart

distribution with scale matrix � and degrees of freedom parameter m. The

Wishart distribution is most typically used when describing the covariance

matrix of multi-normal samples. In this work, we are interested in an

inverse noise covariance, so the inverse Wishart distribution is chosen.
Replacing C0 in Eq. (3) with C yields P(B|N, X, Q, J, C), and

the final smooth Bayesian formulation of spatiotemporal MEG

localization problem is obtained as follows:

P N ;X ;Q; J;CjBð Þ” jr0C0j k � r0 � 1ð Þ=2jCj� k þ 1ð Þ=2

Z0k
a

N

2pr2
a

� �T=2jCcuj1=2
h i

� e
�1

2
BnVC

�1Bn þ ~N
a ¼ 1

1

r2a
jaVC

�1
cu ja þ Tr r0C0C

�1ð Þ
h i

;

where Z0 ¼ Z
4T T � 1ð Þp2R3

0

3

�� N

2pð Þr0=2 Nmax � Nmin þ 1ð Þ:
ð6Þ

In order to reduce the dimension of unknown parameters and to

make the distribution that is to be sampled more smooth, it makes

sense to marginalize the distribution function over some redundant

or less interesting parameters. The noise covariance matrix has a

large number of parameters that are typically not of interest. In

addition, for an implementation of MCMC for the posterior

distribution, where every parameter of current time courses was

sampled, it was very difficult to generate a time course at random

that would have a decent chance of being accepted in the MCMC.

We found that marginalization over time courses J could avoid this

problem. Therefore, we have good reasons to marginalize the

posterior over a noise covariance as well as time courses.
Marginalization analysis

Marginalization of noise covariance C and current time courses J

Here, we describe marginalization over both C and J, and the

other significant parameters are sampled from the marginalized
Marginal posterior

over J

11 3.98 mm

Marginal posterior

over J and C

1 4.89 mm

Two dipole sources problem: number of MCMC runs that were stuck in a

local maximum and the average localization error per dipole for two

marginal posterior distributions. A total of 50 MCMC runs were tested.

Using the posterior that marginalizes over both J and C results in a

significant reduction of local maxima errors with only a marginal increase

in localization error.



Fig. 3. The location, orientation and time courses of the three dipole sources

used to generate simulated data as described in Three dipole sources

problem: results and discussions.
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posterior distribution function by a MCMC technique. Current time

courses J are separately sampled from the approximate normal

distribution, which is obtained by substituting the other sampled

parameters into Eq. (15). We first attempt marginalization over

noise covariance C and then marginalize over current time course

J. Assuming ra is independent of a for simplicity, we rewrite Eq.

(6) in terms of C:

jr0C0j k � r0 � 1ð Þ=2jCj� k þ 1ð Þ=2

Z0 2pr2ð ÞNT=2jCcujN=2
e
�1

2
Tr r0C0þBnBnV½ �ð ÞC�1ð Þ þ 1

r2
Tr JVC�1

cu Jð Þ:

ð7Þ
Here, we used the identity v VAv = Tr(vv VA) for any vector v and

any matrix A. Integration of Eq. (7) over C yields (see Appendix A

for more detail):

Z k þ 1ð Þjr0C0j�1=2

Z0 2pr2ð ÞNT=2jCcujN=2
1þ 1

r0
BnV C

�1
0 Bn

� �� k � r0ð Þ=2
e
� 1

2r2
Tr JVC�1

cu Jð Þ:

ð8Þ
Now, we are in a position to integrate over J. By using the

approximation (1 + x)�p � e�px for 0 < x << 1 and p >> 0, we
Fig. 4. Three dipole sources problem. Left: simulated spatiotemporal data.
obtain the final approximated marginal posterior distribution (see

Appendix B for more detail):

P N ;X ;QjBð Þ” 1þ rð Þ� k � r0ð Þ=2

j2r2C2j1=2
e
� k � r0ð Þ

r2 1 þ rð Þ
qVC�1

2 C1q;

F ¼ AV‘Ið Þ;
C1 ¼ F VC�1

0 F;

q ¼ C�1
1 F VC�1

0 vec Bð Þ;

r ¼ 1

r0
vec Bð ÞV C�1

0 � C�1
0 FC�1

1 F VC�1
0

� �
vec Bð Þ;

C2 ¼
k � r0ð Þ

2 1þ rð Þr0
C1 þ

1

2r2
I: ð9Þ

Speed-up strategy

Because Bayesian inference requiresmany likely solutions, we need

an efficient way to compute the marginal posterior. For every

computation of the marginal posterior probability distribution Eq. (9),

weneed to compute inversions ofmatrixC1 andmatrixC2 of sizeNT �
NT. Problems having a small number of dipoles and a small number of

time samples are easily dealt with. However, for any problem having

tens of dipoles and hundreds of time samples, the inversion of a sizeable

matrix (thousands by thousands) is required for every evaluation of the

marginal posterior distribution, which would be time-consuming. For

this reason, the following speed-up strategy was used:

First, we look at the temporal current correlation matrix Ccu of

size T � T. Due to its symmetry and its positive definiteness

(inherently given to correlation matrix), it can be eigenvalue

decomposed as below:

Ccu ¼ PcuScuPcuV:

Looking into eigenvalues of Ccu, we may see that there are some

number (about 65% among its eigenvalues in example in Example:

simulated data section) of almost vanishing eigenvalues. The

condition number of matrix Ccu might be large enough and its

inversion might be very sensitive due to some vanishing eigenval-

ues. To avoid this numerical problem, it is conventional to eliminate

vanishing eigenvalues within a certain threshold by setting them to

zero and to remove their components from the computational

domain. Thus, the above decomposition can be approximated by

Ccu , P̂PcuŜScuP̂PcuV ; C�1
cu , P̂PcuŜS�1

cu P̂PcuV ;

where �̂cu is a T V � T V diagonal matrix consisting of T V (should
be << T) significant eigenvalues, and P̂cu is a T � T V matrix

consisting of eigenvectors corresponding to significant eigenvalues.
Right: reduced Chi-square time course (RCTC) for simulated data.



Fig. 5. Three dipole sources problem. Log probability (left) and number of dipoles (right) as a function of index of MCMC sample for the diagonal one pair

approximation.
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In order to use the above approximated decomposition in the

Bayesian frame, the current time course prior J̃ = �̂cu
�1/2P̂VcuJ in

eigenspace is given below:

P J̃JjN
� �

¼ k
N

a ¼ 1

1

2pr2
a

� �T V=2
! 
e
�1

2
RN

a ¼ 1
1

r2a
J̃JaVJ̃J a

: ð10Þ

Replacing Eq. (1) into Eq. (10) in the posterior distribution Eq.

(6) and marginalizing it over both C and J̃ yields

PJ̃J N ;X ;QjBð Þ” 1þ rð Þ� k � r0ð Þ=2

j2r2C2j1=2
e
� k � r0ð Þ

r2 1 þ rð Þ
q VC�1

2 C1q;

F̃¼ AV‘ P̂PcuŜS1=2
cu

	 

:

ð11Þ

The other parameters C1, q, r, and C2 are the same as those in

Eq. (9) if F is replaced into F̃. Since F̃ is an LT � NT V matrix, the

dimensions of C1 and C2 becomes smaller NT V than those of C1

and C2 in Eq. (9). This plays an important role in speeding up the

MCMC technique.

In addition, the inversion of matrix C0 of size LT � LT should

be computed once. This usually requires a large amount of memory

storage as well as significantly large computation cost. Our

solution to this computation and storage issue will be discussed

later in Noise covariance approximation.

The formulation is transformed from original time variables to

eigentime variables, keeping only the significant ones. Thus, the

solutions in the MCMC are calculated using this truncated space,

and then the formulation is transformed back into original time

variables for recording. Finally, we use Eq. (11) as the final marginal

posterior distribution which is to be sampled using MCMC.
Fig. 6. Three dipole sources problem. MCMC result on the diagonal one

pair approximation: 3-dimensional locations of regions containing dipoles

from 200 MCMC samples (color) together with true dipole locations and

orientations (gray arrows).
Reversible jump Markov Chain Monte Carlo technique

We can now readily use MCMC schemes to sample the

posterior probability distribution PJ̃(N, w|B) in Eq. (11) on the

parameter space ?NZ{Nmin,. . .,Nmax}
{N} � 8N, where 8 is a

collection of all possible state w representing all parameters

except for N to be sampled from Eq. (11). MCMC methods are

primarily used to construct a Markov chain ({N(0), w(0)}, {N(1),

w(1)}, {N(2), w(2)}, . . .) and to choose the transition probabilities

P({N(k + 1), w(k + 1)}|{N(k), w(k)}) in such a way that the

probability distribution of k-th realization converges to targeted

distribution as k goes to infinity, i.e.,

lim
k �> V

P N kð Þ;w kð Þ
n o	 


¼ PJ̃J N ;wjBð Þ:
After discarding samples during a burn-in period (in other

words, using a convergence process), drawing realizations of the

Markov chain gives us a random sample of the probability

distribution. In order to assure convergence of MCMC, it is

sufficient that the following ‘‘detailed-balance’’ condition is

satisfied:

PJ̃J N kð Þ;w kð ÞjB
	 


P N k þ 1ð Þ;w k þ 1ð ÞjN kð Þ;w kð Þ
	 


¼ PJ̃J N k þ 1ð Þ;w k þ 1ð ÞjB
	 


P N kð Þ;w kð ÞjN k þ 1ð Þ;w k þ 1ð Þ
	 


:

In order to sample without prior determination of the number

of dipoles, we needed a trans-dimensional sampling strategy, i.e.,

jumps between subspaces of different dimensions. Green (1995)

proposed the Reversible Jump MCMC technique which combines

classical Metropolis moves with Reversible Jump (RJ) moves and

allows movement between different parameter spaces that

satisfies the detailed balance. The move from (N, w) to (N*,



Fig. 7. Three dipole sources problem. MCMC result on the diagonal one pair approximation: histogram plots of time courses for 2000 collected inferences.

Each gray intensity represents a probability level of reconstructed dipole magnitude at each time from low (black) to high (light gray)—0.50, 0.90, and 0.95.

Top left to bottom left—dipole 1, dipole 2, dipole 3 (D1–D3).
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w*) is proposed by drawing a random vector u with probability

density function g(u) and setting w* = f* (w, u). The reverse

move is proposed in the same way by drawing u* from a

probability density function g* (u*) and setting w = f (w*, u*),

which u and u* satisfies Dim(w) + Dim(u) = Dim(w*) +

Dim(u*). In order to satisfy detailed balance, the new candidate

sample (N*, w*) is accepted with probability

a ¼ min 1;
PJ̃J N4;w4jBð Þj N4Y Nð Þg4 u4ð Þ
PJ̃J ðN ;wjBÞj N Y N4ð Þg uð Þ

���� fl w4; u4ð Þ
fl w; uð Þ

����
)
;

(

where j(a Y b) is the probability proposing movement from a

to b. In particular, for movement between adjacent dimensional

subspaces, i.e., between {N} � 8
N and {N + 1} � 8

N + 1,
Fig. 8. Three dipole sources problem. Log probability (left) and number of dipoles (
we can simplify the acceptance ratio by removing u or u* like

this:

aNYN4¼N þ1 ¼ min 1;
PJ̃J N4;w4jBð Þj N4Y Nð Þ
PJ̃J N ;wjBð Þj N Y N4ð ÞgðuÞ

���� flw4
fl w; uð Þ

����
)(
;

and

aN 4 ¼ N þ 1 YN ¼ min 1;
PJ̃J N ;wjBð Þj N YN4ð Þg uð Þ
PJ̃J ðN4;w4jBÞj N4Y Nð Þ

���� fl w; uð Þ
flw4

����
)
:

(

In our RJ-MCMC procedure, a candidate sample (N*, w*) is

chosen from two categorized proposal distributions:

& Trans-dimensional proposal

qBirth move: a new dipole and its parameters are proposed.
right) as a function of MCMC sample index or the multi-pair approximation.
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qDeath move: a randomly chosen dipole is proposed to be

removed.

& Update proposal

q Location update move: a dipole is randomly chosen and its

new location is proposed. Each location component is

proposed by Gaussian random generator with standard

deviation r loc = 1 mm.

q Orientation update move: a dipole is randomly chosen, and

its new orientation is proposed by Gaussian random

generator with standard deviation rori = 0.1 radian.

Noise covariance approximation

The most commonly used noise covariance approximation is

the uncorrelated diagonal model consisting of sensor variances.

When we applied this noise model in our analysis using a nonzero

temporal correlation prior on data consisting of empirical noise and

simulated sources, many spurious dipoles arose to model the

correlations that are typically present in empirical data (Kuriki et

al., 1994). This is understandable given the fact that we had set up

the analysis for uncorrelated noise and correlated signal but had

applied it to data with empirical noise that had spatial and temporal

correlation. Thus, the analysis tried to model these correlations

using extra dipoles. We can reduce this effect by using an

uncorrelated temporal prior, as is shown in the following example

of Three dipole sources problem: results and discussions. Using a

better model for the noise covariance allowed us to use a correlated

temporal prior and improve the accuracy of the results.

The averaged (assuming M1 epochs2) noise covariance matrix

C0 in its most general form can be estimated from all collected real

brain noise sets {n1, n2,. . ., nM2} (assuming M2 sets3 like this

(usually M2 >> M1)
4:

C0 ¼
1

M1 M2 � 1ð Þ

�
XM2

i ¼ 1

vec ni
� �

� vec n̄ð Þ
� �

; vec ni
� �

� vec n̄ð Þ
� �

V ð12Þ

n̄ ¼ 1

M2

XM2

i ¼ 1

ni: ð13Þ

Looking into Eq. (11), we find that the inversion of C0 is

needed to calculate the posterior distribution. However, this matrix

can be very large. For the problem in the following example (L =

121 sensors, T = 70 time samples), the inversion of an 8470 �
8470 matrix is required. This would be severely time consuming
2 To get reasonable (in terms of S/N) evoked responses, many replicates

of stimulus-locked post-stimulus signal are averaged. In our experiment,

602 (M1) and 328 (M1) replicates were averaged in Example: simulated

data and in Example: empirical data, respectively.
3 To estimate noise covariance, we need as many real noise sets as

possible. In our experiment, we collected 1992 (M2) and 1250 (M2) single

trial real noise sets from off-stimulus region in Example: simulated data and

in Example: empirical data, respectively.
4 This assumption is not required in our analysis. In practice, because of

subject fatigue, it is hard to collect as many replicates for the same stimulus

as are needed. Practical alternatives include using large ISIs (interstimulus

intervals) or collecting data during subject rest time for several minutes

because thousands of off-stimulus signals can be obtained.
and would require a significant amount of memory to store after

pre-computing its inverse. Under the reasoning that spatial and

temporal covariances are almost independent and separable, the

approximation of C0 by a Kronecker product of a spatial

covariance matrix S and a temporal covariance matrix T has been

recently proposed as a solution to these difficulties (Huizenga et

al., 2002; De Munck et al., 2002), i.e.,

C0 , S‘ T:

Huizenga et al. (2002) proposed a parameterized spatial model

and Toeplitz temporal model and found an optimized one pair

approximation in the sense of Frobenius matrix norm. De Munck et

al. (2002) developed an unparameterized one pair approximation

by maximum likelihood method. This approximation has the

valuable property that its inversion is easily computed and the

memory required for approximate C0 to be stored is tremendously

small. To obtain a better approximation of spatiotemporal noise

structure, we developed a multi-pair approximation by using the

sums of pairs (the number of pairs is the same as the number of

sensors) of Kronecker product. In this way, the inversion is still

easily computed:

C0 ,
XL
l ¼ 1

Sl‘Tl;C
�1
0 ,

XL
l ¼ 1

Sl‘T�1
l ;

where Sl and Tl represent l-th the spatial covariance component

and temporal covariance component, respectively (Plis et al.,

2005). Sl are obtained by using singular value decomposition

(SVD) in space, so they are mutually orthonormal in matrix

product sense. After transforming the data into an orthonormal

spatial basis, the Tl are estimated. In the following examples, we

used this multi-pair noise covariance approximation together with

a correlated temporal prior (b > 0 in Eq. (2)) as well as a diagonal
Fig. 9. Three dipole sources problem. MCMC result on the multi-pair

approximation: 3-dimensional locations of regions containing dipoles from

200 MCMC samples (color) together with true dipole locations and

orientations (gray arrows).
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noise covariance approximation with an uncorrelated temporal

prior (b = 0) for experiments.
Example: simulated data

Data

Note that although we present applications of this Bayesian

inference analysis to MEG data only, this analysis can be applied to

EEG data as well. Empirical MEG noise (for generating simulated

MEG data and for estimating a noise covariance) was acquired

from the following experiment:

Median nerve stimulation at the motor twitch threshold

was applied using a block design of 30 s on, 30 s off for

a total of 10 blocks for each of 8 runs. Data were

acquired during both stimulation Fon_ and Foff_ epochs,

the latter being used to construct the present noise data

set. Stimulus alternated across runs, with four runs total of

left side stimulation and four runs total of right side

stimulation. The ISI (interstimulus interval) was random-

ized from between 0.25 and 0.75 s. Data were collected

with 1 kHz sampling from a male subject, age 38, on a

4D Neuroimaging Neuromag-122 whole-head gradiometer

system with 122 channels (Ahonen et al., 1993). One of

122 channels was discarded due to its malfunctioning.

Structural MR data on the same subject were collected on

a 1.5 T Picker scanner for registration purposes. Data

were (1-median)5 filtered. 60 Hz noise and its harmonics

were filtered out by removal of peaks in the spectrum and

interpolation between adjacent spectrum points.

To generate simulated data, we added the simulated signal from

the given dipole source information to the noise data.6 As a time

window size, we used 70 (T) time samples and averaged 602 (M1)

stimulation Foff_ epochs to produce our sample noise data. We used

reduced Chi-square time course (RCTC) as our measure of the

signal to noise ratio (SNR) as follows:

RCTC tð Þ ¼
XL
s¼1

B2
t; s=vars

	 

=L:

Here, Bt,s is a spatiotemporal signal at time t and channel s, and

vars denotes s-th channel noise variance. L is the number of

channels. This is a statistical measure that will have a value around

1 for pure noise. Values above 1 indicate increasingly significant

evidence for the presence of signal.

For estimation of noise covariance, we collected empirical

single trial spatiotemporal noise data sets (M2 = 19927 for 70 time

window size) from this experiment during off-stimulus periods

and approximated a noise covariance as a multi-pair Kronecker

product approximation. In addition, a commonly used noise
7 All 602 single trial noise data sets for generating simulated data were

ollected from uniformly between 10 and 80 ms before stimulus onset.

ingle trial noise data sets for noise covariance approximation were

ollected as many as possible. This was determined by the duration of the

ff-stimulus period, which varied over the epoch. In this way, we ensured

at each of single trial noise data sets for simulated data would be at least

5 We subtracted median filtered data from unfiltered original data.
6 The same forward model as in our analysis was applied.

8 This marginal distribution can be obtained by marginalizing Eq. (4)

over time courses J only.
9 Nmax = 2 and Nmin = 0. The standard deviation of the dipole magnitude

prior r for all dipoles was set to 10 nA.
10 One inference was randomly chosen and recorded among every 10

inferences during sampling procedure. Thus, one inference required 10
c

S

c

o

th
partly and in some cases totally used for noise covariance approximation.
covariance was estimated as a pair Kronecker product of a diagonal

spatial covariance consisting of 121 (L) channel noise variances

and an identity temporal covariance. Both models had the same

sensor variances and only differed in their correlation structure.

Convergence of MCMC: local maxima issue and discussions

Most MEG/EEG source localization methods have encountered

local maxima (or minima) problems. To overcome them, heuristic

methods such as simulated annealing (SA) and genetic algorithms

(GA) have been developed (Uutela et al., 1998b). Even though

these methods mathematically guarantee that global maximum can

be obtained, they often require enormous computation time. As

alternatives, multi-start iterative methods (Huang et al., 1998)

(choosing best one among results from many initial starts) and

hybrid iterative methods (Jun et al., 2002; Jun and Pearlmutter,

2005) (combining automatic or semi-automatic fast initializer into

conventional iterative method) have been proposed.

In our analysis, a marginalization technique over both noise

covariance and time courses has been applied to overcome the

local maxima problem in Marginalization analysis. In this

section, we investigate how our proposed analysis works in the

special MEG localization problem we generated, which is a

complicated two dipole sources problem presumably having

many local maxima. Fig. 1 illustrates this two dipole sources

problem—two dipoles are located closely and almost oppositely

oriented; their time courses have the same shapes, and phases are

slightly different. The spatiotemporal signal from two dipoles

was added to real noise data, which is the same as the one in

Example: simulated data. Fig. 2 describes the simulated signal

data (overlapped plot) over 121 channels and its RCTC. For the

comparison, conventional MCMC procedure was applied for two

distribution functions—marginal posterior distribution8 over time

courses J and marginal posterior distribution over time courses J

and noise covariance C (our proposed analysis: Eq. (11)). The

diagonal noise covariance approximation we estimated in

Example: simulated data with an uncorrelated temporal prior

was used for both.

For each distribution function, we ran 50 MCMC9 runs. Each

run started with a randomly chosen initial start configuration

near the true dipole location and was allowed to sample a total

of 2000 inferences10 (20,000 iterations here). For each run, the

first 1500 inferences were automatically discarded to allow a

burn-in-period and the remaining 500 sampled inferences were

used to check whether that run’s results were in a local

maximum. An MCMC run was labeled as being stuck in a

local maximum if the locations of that run’s reconstructed

dipoles did not encompass the true dipole locations and the

maximum posterior probability of these solutions was orders of

magnitude lower than the posterior probability of the true

solution. This latter condition was included because it is possible

for there to exist a local maximum with a posterior probability
iterations.



11 Actually, one inference was randomly chosen and recorded among

every 10 inferences during sampling procedure. Thus, one inference

required 10 iterations.

Fig. 10. Three dipole sources problem. MCMC result on the multi-pair approximation: histogram plots of time courses for 2000 collected inferences. Each gray

intensity represents a probability level of reconstructed dipole magnitude at each time from low (black) to high (light gray)—0.50, 0.90, and 0.95. Top left to

bottom left—dipole 1, dipole 2, dipole 3 (M1–M3).
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near that of the true solution that a sampling algorithm should in

fact sample.

Table 1 shows the number of MCMC runs that were stuck in

a local maximum for each distribution function. For our proposed

analysis, only 1 among 50 MCMC runs was stuck in a local

maximum, while 11 out of 50 runs were stuck in a local

maximum for the posterior distribution that marginalized only

over J. Of these 11, there were many different local maxima, and

all had maximum posterior probabilities that were significantly

smaller than that of the true solution. For those runs that were not

stuck in a local maximum, we calculated the average localization

error per dipole for both types of posterior distribution. These

results are shown in the right column of Table 1 and indicate that

there is about a millimeter more error for the distribution that

marginalized over both J and C. This reflects the extra

uncertainty that was added by treating the noise covariance as

uncertain. The magnitude of this increased error is much smaller

than the error that would be caused by mistakenly using the

results from one of the local maxima so that it is much better to

use the posterior that marginalized over both J and C. We use

this posterior for the remainder of the analyses presented in this

paper.

Finally, we note that for sampling algorithms all local maxima

should be visited in proportion to their posterior probability.

Indeed, MCMC jumping rules are constructed to mathematically

guarantee that long iterations yield perfect sampling. However,

the length of the MCMC chain needed to achieve this objective is
not limited and becomes a very important practical issue. There is

also the possibility that we could construct a more efficient

MCMC algorithm that would be less prone to get stuck in a local

maximum (Green and Mira, 2001; Haario et al., 1999). This will

be examined in future work.

Three dipole sources problem: results and discussions

To further investigate the feasibility of our proposed Bayesian

inference dipole analysis, we generated a three dipole source

problem. Their locations, orientations, and current time courses are

illustrated in Fig. 3, and the simulated signal data over 121

channels and a measure of its signal to noise are described in Fig.

4. The same empirical noise as was used in the previous section

was used here. In this section, we examine how different noise

covariance approximations (diagonal or multi-pair) affect the

performance of our analysis.

The posterior distribution function Eq. (11) for each noise

covariance approximation was sampled using MCMC with Nmin =

0, Nmax = 9 and the standard deviation of the dipole magnitude

prior r for all dipoles was set to 20 nAm. The MCMC runs

generated 3000 inferences.11 After discarding the first 1000



Fig. 11. Three dipole sources problem. Relative location error histograms for the diagonal one pair approximation (dotted line) and the multi-pair

approximation (solid line). We used 2000 collected inferences for each. Left to right—(D1 vs. M1), (D2 vs. M2), (D3 vs. M3).

Fig. 12. Empirical Data. Left hand median nerve stimulation spatiotemporal

data from 122 channels are overlapped. The shaded region shows the time

window that was analyzed.
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inferences due to burn-in-period, the remaining 2000 inferences

were chosen for analysis and comparison.

Diagonal noise covariance

For the diagonal noise covariance case, we used a current time

course prior which is temporally uncorrelated (b = 0 in Eq. (2)). As

has already been stated, the use of a correlated temporal prior with

a diagonal (uncorrelated) noise covariance yields extra spurious

dipoles that attempt to model the correlated noise. The use of an

uncorrelated temporal prior eliminates this problem as is shown in

this example. Fig. 5 shows the number of dipoles and log

probability of the targeted posterior probability distribution as a

function of collected MCMC sample for the diagonal one pair

approximation. Three dipole sources were finally sampled after

approximately 200 inferences, and we consistently found three

sources for even multiple MCMC runs for different random seeds

and initial starts after some amount of burn-in-periods.

Fig. 6 shows 3-dimensional locations of regions that contained

the reconstructed dipoles from randomly chosen 200 among a total

of 2000 MCMC samples together with the true dipole locations.

The region of the weakest dipole (D1) looks more broadly

distributed than those of other dipoles, which is due to the well

known fact that the higher signal-to-noise (S/N) signals can be

more focused and better localized than the lower S/N signals.

Furthermore, this region for D1 appears to not encompass the true

location. This will be examined more closely in comparison to the

results with the multi-pair noise covariance.

Any feature or inference (such as dipole location) can be

quantified probabilistically using the MCMC samples. For

example, the radius of the sphere that contains each dipole at a

90% level is estimated by finding the radius of the sphere that

contains a dipole in 90% of the MCMC samples. For the three

dipole sources, this was found to be 2.63 mm, 1.36 mm, and 1.31

mm (from dipole D1 to dipole D3), respectively. We can also

quantify the probability for time courses. Fig. 7 shows the posterior

distribution of each dipole’s time course. Here, we have displayed

it using a few distinct probability levels. These were constructed by

forming a two-dimensional histogram of the time courses from a

total of 2000 MCMC samples. These distributions are consistent

with the true time courses.

Multi-pair noise covariance

With the multi-pair noise covariance, we ran the MCMC

sampling code with a correlated time course prior (b = 8 ms in Eq.

(2)). Figs. 8–10 display the results in the same manner as for the

diagonal noise covariance case. Here, too, three dipoles were

found, and the time course distributions are consistent with the true

time courses, although they are smoother, reflecting the use of a
correlated time course prior. However, for this case, the locations

of all three reconstructed dipoles clearly encompass the true

locations. The radii of the spheres that contain dipoles at a 90%

level were found to be 4.36 mm, 2.36 mm, and 1.80 mm (from

dipole M1 to dipole M3), respectively.

In order to investigate in more detail the possible localization

error problem of D1 in the diagonal noise covariance case, we

examined the posterior distribution of the relative localization

error to the exact dipole location. This was constructed by

histogramming the reconstructed dipole locations across the

MCMC samples projected along the axis going through the

exact dipole location (origin) and the peak of the posterior

location distribution. These results are shown in Fig. 11 for each

dipole. Clearly, D1 in the diagonal noise covariance is not

correctly localized as its posterior distribution does not encom-

pass the true location (at 0 in these plots). We believe this is due

to using a noise covariance that does not adequately capture the

correlation structure of the noise, given that the more complex

multi-pair noise covariance results do not have this problem. The

width of the posterior distributions are also slightly smaller for

the diagonal noise approximation than for the multi-pair

approximation. This is because the lack of positive correlation

in the diagonal approximation increases the effective degrees of

freedom in the data yielding an erroneous decrease in the width

of the posterior location distributions.

These results suggest that the use of the diagonal (uncorrelated)

noise covariance model in our analysis with empirical data, which

typically has a complex spatial and temporal correlation structure,

can lead to location errors and or spurious dipoles. However, this

needs to be investigated in more detail, using other data sets and a

wider range of source configurations. We also intend to investigate

the effects of prior distribution parameters.
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Example: empirical data

Data

Here, we demonstrate the performance of our analysis with

an empirical median nerve stimulation MEG data set that is

from a different experiment and a different subject than in the

previous sections. We make use of all the features of our

analysis method that were described in the previous sections.

These include the use of the multi-pair noise covariance model

with temporally correlated time course prior and treating the

noise as uncertain and sampling from the posterior distribution

that has been marginalized over both time courses and noise

covariance.

The empirical data were acquired from the following

experiment:

The median nerve was stimulated using two surface

electrodes placed on the forearm. A 0.5 ms current pulse

was applied using a Grass Constant Current Stimulator.

The electrodes and voltage were adjusted until a thumb

twitch was obtained in each hand. If the maximum

voltage was reached without a thumb twitch, the subject

was run with the maximum voltage. The right and left

median nerves were stimulated randomly with a 0.5 s ISI.

Data were digitized at 1 kHz with the online filters set to

0.03–330 Hz. An interval of 0.1 s pre-stimulus and 0.5 s
Fig. 13. Empirical data. Results from our analysis showing the posterior probability

of the 2 reconstructed dipoles. The probability has been quantitated into distinct

temporal distributions use the same probability levels.
post-stimulus were collected. Data were collected from a

single subject on a 4D Neuroimaging Neuromag-122

whole-head gradiometer system with 122 channels.

Structural MR data on the same subject were collected

on a 1.5 T Picker scanner for registration purposes. Data

were (1-median) filtered to remove low frequency drifts

but were not filtered for 60 Hz noise and its harmonics

because their effects were negligibly small.

A total of 328 (M1) epochs of left hand stimulation data were

averaged to produce the data set to be analyzed. Sensor waveform

overplots for this data set are shown in Fig. 12. The data from a

total of 30 ms (T) time samples starting 11 ms post-stimulus onset

were analyzed. The multi-pair noise covariance parameters were

estimated from M2 = 1250 single trial spatiotemporal noise epochs

that were far in time from a stimulus or a stimulus evoked neural

response.

Results and discussions

This data set was analyzed by applying our MCMC sampling

algorithm using the temporal time course prior distribution shown

in Eq. (2) with b = 3 ms, and the standard deviation of the dipole

magnitude prior r for all dipoles was set to 20 nAm. The prior for

the number of dipoles was uniform between 0 and 9.

Multiple MCMC runs were generated using different random

number seeds and starting configurations. Each run generated
distributions for the time courses (left column) and locations (right column)

levels as shown in the color bar in the lower left panel. Both spatial and
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5000 samples, of which the final 3000 were used in making

inferences about the results. The results from all runs were

found to be consistent. Here, we present the results from one

MCMC run.

Even though the number of dipoles was allowed to vary, only

two dipoles were consistently obtained across the MCMC samples,

both located on the postcentral gyrus near the central sulcus, one

somewhat more medial and posterior than the other. Fig. 13 shows

the posterior probability distributions for the locations and time

courses of the two dipole sources, superimposed on the subject’s

anatomical MRI. These distributions are quantitative and have

been quantitated into distinct posterior probability levels, as shown

in the color bar in the lower left panel of the figure. Both spatial

and temporal distributions are shown with the same probability

levels.

These spatial and temporal distributions are strongly reminis-

cent of previous reports of electrical and magnetic recordings of

short-latency somatosensory activity in humans and monkeys as

reported by Allison et al. (1991a,b); McCarthy et al. (1991); Wood

et al. (1985, 1988); Huang et al. (2000). The more lateral source

(shown in shades of blue) was deeper on the postcentral gyrus,

adjacent to the central sulcus. The more medial source (shown in

shades of red) was located more superficially on the crown of the

postcentral gyrus, straddling the sulcus itself so that there was

nonzero probability both anterior and posterior to the sulcus. These

patterns are similar to those seen in invasive recordings in monkeys

(McCarthy et al., 1991) and have been attributed by Allison and

colleagues to activity in cytoarchitectonic areas 3b and 1,

respectively, on the postcentral gyrus (Allison et al., 1991a,b).

The issue of whether the precentral gyrus (cytoarchitectonic area 4)

contributes to any of this activity remains controversial (e.g.,

Huang et al., 2000), and the present results are consistent with

either interpretation. We also analyzed the data from the right hand

stimulation and found very similar results in terms of the number,

locations relative to the contralateral central sulcus, and time

courses of the reconstructed dipoles.
Conclusion

We have demonstrated a Bayesian inference dipole analysis

for spatiotemporal MEG/EEG data that has several positive and

innovative features. It does not require the prior determination

of the number of dipoles, significantly reduces the common

local minima problem of multi-dipole analyses by adding

uncertainty for the noise covariance, and yields quantifiable

probabilistic inferences. We have demonstrated the ability to

handle complex and realistic estimates of the background noise

and have shown that this can reduce the effects of under-

modeling the complex correlation structure that is typically

present in noise from empirical MEG/EEG data. Finally,

experiments on both simulated and empirical data have shown

the value and capability of our Bayesian inference dipole

analysis.
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Appendix A. Derivation of Eq. (8)

Let us start by taking into account C of Eq. (7):

jr0C0j k � r0 � 1ð Þ=2jCj� k þ 1ð Þ=2
e�

1
2
Tr r0C0 þ BnBnV½ �C�1ð Þð Þ: ð14Þ

We can rearrange it into (k + 1)-th inverse Wishart distribution

having C̃0 = C0 + 1/r0BnBVn in place of C0:

jr0C0j k� r0 �1ð Þ=2
Z k þ 1ð Þjr0C̃C0j� k� r0ð Þ=2 jr0C̃C0j k� r0ð Þ=2jCj� kþ1ð Þ=2

Z k þ 1ð Þ

� e�
1
2
Tr r0C̃C0C

�1ð Þð Þ:

Integration over C using normalization property of probability

distribution function yields

jr0C0j�1=2
Z k þ 1ð ÞjC�1

0 C̃0C0 j� k � r0ð Þ=2:

Substitution of C0 + 1/r0BnBVn for C̃0 and properties (symmetry,

positive definiteness) of C0 yields

jr0C0j�1=2
Z k þ 1ð Þ

����Iþ 1

r0
C

�1=2
0 Bn

	 

C

�1=2
0 Bn

	 

V

����
� k � r0ð Þ=2

:

Let us take into account

����Iþ 1

r0
C

�1=2
0 Bn

	 

C

�1=2
0 Bn

	 

V

����:
Letting B̃n = C0

�1/2Bn and eigenvalue decomposition of B̃nB̃nV
yields

BnB̃BVn¼ PDP V

¼ B̃nBn

jB̃nBn j
/2 > /r0

�� B̃nVBnVB̃nBn 0 > 0

0 0 > 0

s s G s
0 0 > 0

1
CCA

0
BB@ B̃nV

jB̃nBn j
/2 > /r0

�
V;

�

where / i, i = 2, . . ., LT are orthonormal eigenvectors of B̃nB̃nV
which are orthogonal to B̃n. Computing |I + 1/r0 B̃nB̃nV | gives����Iþ 1

r0
B̃nB̃nV

���� ¼
����Iþ 1

r0
PDP V

���� ¼
����Iþ 1

r0
D

����

¼ 1þ 1

r0
B̃nVB̃n ¼ 1þ 1

r0
BnVC

�1
0 Bn:
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Finally, the integration of Eq. (14) over C gives

jr0C0j�1=2
Z k þ 1ð Þ 1þ 1

r0
BnVC

�1
0 Bn

�� � k � r0ð Þ=2
:

Eq. (8) follows from this result.
Appendix B. Derivation of Eq. (9)

We start from Eq. (8):

Z k þ 1ð Þjr0C0j�1=2

Z0 2pr2ð ÞNT=2jCcujN=2
1þ 1

r0
BnVC

�1
0 Bn

�� � k � r0ð Þ=2
e
� 1

2r2
Tr JVC̃C�1

cu Jð Þ

Dropping constant of the above equation and rearranging yields

j1þ aþ vec Jð Þ � bð ÞVC̃C vec Jð Þ � bð Þj�p
e
� 1

2r2
vec Jð ÞVC̃C�1

cu vec Jð Þ;

where

a ¼ vec Bð ÞV 1

r0
C�1

0 � C�1
0 X X VC�1

0 X
� ��1

X VC�1
0

h i��
� vec Bð Þ;

b ¼ C̃C�1X VC�1
0 vec Bð Þ

C̃C ¼ X VC�1
0 X ;

X ¼ AV‘ Ið Þ; p ¼ k � r0ð Þ=2:
By using the approximation (1 + x)�p � e�px, we obtain

1þ að Þ�p
e
� p

1 þ a
vec Jð Þ � bð ÞVC̃C vec Jð Þ � bð Þ� 1

2r2
vec Jð ÞVC̃C�1

cu vec Jð Þ:

Rearranging in terms of vec(J) yields

1þ að Þ�p
e
� vec Jð ÞV p

1 þ a
C̃C þ 1

2r2
C̃C�1

cu

� �
vec Jð Þ � 2p

1 þ a
bVC̃C vec Jð Þ þ p

1 þ a
bVC̃Cb

� �
:

Squaring the exponent part yields

1þ að Þ�p
e�ðvec Jð Þ � b̃bÞVSðvec Jð Þ�b̃bÞ� p

1þa
bVC̃Cbþ p2

ð1þaÞ2
bVC̃C S

�1
C̃Cb: ð15Þ

Here

b̃b ¼ p

1þ a
S�1C̃Cb;

A ¼ p

1þ a
C̃C þ 1

2r2
C̃C�1

cu :

Finally, integration over J yields

pNT

jAj

�� 1=2

1þ að Þ�p
e
� p

1 þ a
bVC̃Cb þ p2

1 þ að Þ2
bVC̃S�1C̃Cb

:

Eq. (9) follows from this result, and realizations of vec(J) can

be drawn from the normal distribution N(b̃, ��1) during MCMC

procedure.
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Uutela, K., Hämäläinen, M., Salmelin, R., 1998b. Global optimization in

the localization of neuromagnetic sources. IEEE Trans. Biomed. Eng.

45 (6), 716–723.

Wood, C.C., Cohen, D., Cuffin, B.N., Allison, T., 1985. Electrical sources

in human somatosensory cortex: identification by combined magnetic

and potential recordings. Science 227, 1051–1053.

Wood, C.C., Spencer, D.D., Allison, T., McCarthy, G., Williamson, P.D.,

Goff, W.R., 1988. Localization of human sensorimotor cortex during

surgery by cortical surface recordings of somatosensory evoked

potentials. J. Neurosurg. 68, 99–111.

 http:\\arxiv.org\find\physics\1\au:+Plis_S\0\1\0\all\0\%S\0\1\0\all\0\%1 
 http:URL%20http%3A\\www.lanl.gov\p\p21\mriview.shtml 

	Spatiotemporal Bayesian inference dipole analysis for MEG neuroimaging data
	Introduction
	Formulation of Bayesian inference
	Sampling issues
	Marginalization analysis
	Marginalization of noise covariance C and current time courses J
	Speed-up strategy

	Reversible jump Markov Chain Monte Carlo technique
	Noise covariance approximation
	Example: simulated data
	Data
	Convergence of MCMC: local maxima issue and discussions
	Three dipole sources problem: results and discussions
	Diagonal noise covariance
	Multi-pair noise covariance


	Example: empirical data
	Data
	Results and discussions

	Conclusion
	Acknowledgments
	Derivation of Eq. (8)
	Derivation of Eq. (9)
	References


